HegeLab.org

Selected publications

Click here for ALL publications

  1. Schwaner E, Németh Z, Jani PK, Kajdácsi E, Debreczeni ML, Doleschall Z, Dobó J, Gál P, Rigó J, András K, Hegedűs T, Cervenak L. Transcriptome analysis of inflammation-related gene expression in endothelial cells activated by complement MASP-1. Sci Rep. 7(1):10462. (2017) PubMed: 28874747
  2. Tordai H, Leveles I, Hegedűs T. Molecular dynamics of the cryo-EM CFTR structure. Biochem Biophys Res Commun. 491(4):986-993. (2017) PubMed: 28774558
  3. Gamberucci A, Marcolongo P, Németh CE, Zoppi N, Szarka A, Chiarelli N, Hegedűs T, Ritelli M, Carini G, Willaert A, Callewaert BL, Coucke PJ, Benedetti A, Margittai É, Fulceri R, Bánhegyi G, Colombi M. GLUT10-Lacking in Arterial Tortuosity Syndrome-Is Localized to the Endoplasmic Reticulum of Human Fibroblasts. Int J Mol Sci. pii: E1820. doi: 10.3390/ijms18081820 (2017) PubMed: 28829359
  4. Tordai H, Jakab K, Gyimesi G, András K, Brózik A, Sarkadi B, Hegedűs T. ABCMdb reloaded: updates on mutations in ATP binding cassette proteins. Database (Oxford). doi: 10.1093/database/bax023. (2017) PubMed: 28365738
  5. Szollosi D, Erdei A, Gyimesi G, Magyar C, Hegedus T. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR. PLOS ONE 11:(1) p. e0146066. (2016) PubMed: 26727491
  6. Hegedűs T, Chaubey PM, Várady G, Szabó E, Sarankó H, Hofstetter L, Roschitzki B, Stieger B, Sarkadi B. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford). 2015 Jun 14;2015:bav056 PubMed: 26078478
  7. Tóth A, Brózik A, Szakács G, Sarkadi B, Hegedüs T. A novel mathematical model describing adaptive cellular drug metabolism and toxicity in the chemoimmune system. PLoS One. 2015 Feb 20;10(2):e0115533 PubMed: 25699998
  8. Veit, G., Avramescu, R.G., Perdomo, D., Phuan, P.W., Bagdany, M., Apaja, P.M., Borot, F., Szöllősi, D., Wu, Y.S., Finkbeiner, W.E., Hegedus, T., Verkman, A.S., Lukacs, G.L., Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med. 2014 Jul 23;6(246):246 PubMed: 25101887
  9. Szöllősi, D., Horváth, T., Han, KH, Dokholyan, N.V., Tompa, P., Kalmár, L., Hegedűs, T., Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins. PLOS ONE 2014 (accepted for publication)
  10. Sarankó, H., Tordai, H., Telbisz, Á., Özvegy-Laczka, C., Erdős, G., Sarkadi, B., Hegedűs, T., Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun. 2013, 19:140-5. PubMed: 23800412
  11. Okiyoneda, T., Veit, G., Dekkers, J.F., Bagdany, M., Soya, N., Xu, H., Roldan, A., Verkman, A.S., Kurth, M., Simon, A., Hegedus, T., Beekman, J.M., Lukacs, G.L., Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nature Chemical Biology 2013, 9:444-54. DOI:10.1038/NChemBio.1253
  12. Hegedűs, T., Gyimesi, G., Gáspár, M.E., Szalay, K.Z., Gangal, R., Csermely, P., Potential application of network descriptions for understanding conformational changes and protonation states of ABC transporters. Curr Pharm Des. 2013, 19:4155-72. PubMed: 23170883
  13. Gyimesi, G., Borsodi, D., Sarankó, H., Tordai, H., Sarkadi, B., Hegedűs, T., ABCMdb: a database for comparative analysis of mutations in ABC transporters, and potential framework for a general application, Human Mutation 2012, 33(11):1547-56. PubMed:22693078
  14. Gyimesi, G., Ramachandran, S., Kota, P., Dokholyan, N.V., Sarkadi, B., Hegedűs, T., ATP hydrolysis at one of the two sites in ABC transporters initiates transport related conformational transitions. BBA Biomembranes 2011, 1808(12):2954-64. PubMed: 21840296;